3.2.77 \(\int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx\) [177]

3.2.77.1 Optimal result
3.2.77.2 Mathematica [A] (verified)
3.2.77.3 Rubi [A] (verified)
3.2.77.4 Maple [A] (verified)
3.2.77.5 Fricas [A] (verification not implemented)
3.2.77.6 Sympy [F(-1)]
3.2.77.7 Maxima [F(-2)]
3.2.77.8 Giac [A] (verification not implemented)
3.2.77.9 Mupad [B] (verification not implemented)

3.2.77.1 Optimal result

Integrand size = 13, antiderivative size = 82 \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {2 a^3 \arctan \left (\frac {b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{b^3 \sqrt {a^2-b^2}}+\frac {a \cos (x)}{b^2}-\frac {\cos (x) \sin (x)}{2 b} \]

output
1/2*(2*a^2+b^2)*x/b^3+a*cos(x)/b^2-1/2*cos(x)*sin(x)/b-2*a^3*arctan((b+a*t 
an(1/2*x))/(a^2-b^2)^(1/2))/b^3/(a^2-b^2)^(1/2)
 
3.2.77.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.95 \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\frac {4 a^2 x+2 b^2 x-\frac {8 a^3 \arctan \left (\frac {b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+4 a b \cos (x)-b^2 \sin (2 x)}{4 b^3} \]

input
Integrate[Sin[x]^3/(a + b*Sin[x]),x]
 
output
(4*a^2*x + 2*b^2*x - (8*a^3*ArcTan[(b + a*Tan[x/2])/Sqrt[a^2 - b^2]])/Sqrt 
[a^2 - b^2] + 4*a*b*Cos[x] - b^2*Sin[2*x])/(4*b^3)
 
3.2.77.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {3042, 3272, 3042, 3502, 3042, 3214, 3042, 3139, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (x)^3}{a+b \sin (x)}dx\)

\(\Big \downarrow \) 3272

\(\displaystyle \frac {\int \frac {-2 a \sin ^2(x)+b \sin (x)+a}{a+b \sin (x)}dx}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-2 a \sin (x)^2+b \sin (x)+a}{a+b \sin (x)}dx}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {\int \frac {a b+\left (2 a^2+b^2\right ) \sin (x)}{a+b \sin (x)}dx}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a b+\left (2 a^2+b^2\right ) \sin (x)}{a+b \sin (x)}dx}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {\frac {x \left (2 a^2+b^2\right )}{b}-\frac {2 a^3 \int \frac {1}{a+b \sin (x)}dx}{b}}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {x \left (2 a^2+b^2\right )}{b}-\frac {2 a^3 \int \frac {1}{a+b \sin (x)}dx}{b}}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 3139

\(\displaystyle \frac {\frac {\frac {x \left (2 a^2+b^2\right )}{b}-\frac {4 a^3 \int \frac {1}{a \tan ^2\left (\frac {x}{2}\right )+2 b \tan \left (\frac {x}{2}\right )+a}d\tan \left (\frac {x}{2}\right )}{b}}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {\frac {8 a^3 \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {x}{2}\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {x}{2}\right )\right )}{b}+\frac {x \left (2 a^2+b^2\right )}{b}}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {x \left (2 a^2+b^2\right )}{b}-\frac {4 a^3 \arctan \left (\frac {2 a \tan \left (\frac {x}{2}\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2}}}{b}+\frac {2 a \cos (x)}{b}}{2 b}-\frac {\sin (x) \cos (x)}{2 b}\)

input
Int[Sin[x]^3/(a + b*Sin[x]),x]
 
output
((((2*a^2 + b^2)*x)/b - (4*a^3*ArcTan[(2*b + 2*a*Tan[x/2])/(2*Sqrt[a^2 - b 
^2])])/(b*Sqrt[a^2 - b^2]))/b + (2*a*Cos[x])/b)/(2*b) - (Cos[x]*Sin[x])/(2 
*b)
 

3.2.77.3.1 Defintions of rubi rules used

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3272
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
 + n))   Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d 
*(m + n) + b^2*(b*c*(m - 2) + a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 
 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m 
] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[a, 0] 
&& NeQ[c, 0])))
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.2.77.4 Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.37

method result size
default \(-\frac {2 a^{3} \arctan \left (\frac {2 a \tan \left (\frac {x}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{b^{3} \sqrt {a^{2}-b^{2}}}+\frac {\frac {2 \left (\frac {b^{2} \left (\tan ^{3}\left (\frac {x}{2}\right )\right )}{2}+a b \left (\tan ^{2}\left (\frac {x}{2}\right )\right )-\frac {b^{2} \tan \left (\frac {x}{2}\right )}{2}+a b \right )}{\left (1+\tan ^{2}\left (\frac {x}{2}\right )\right )^{2}}+\left (2 a^{2}+b^{2}\right ) \arctan \left (\tan \left (\frac {x}{2}\right )\right )}{b^{3}}\) \(112\)
risch \(\frac {x \,a^{2}}{b^{3}}+\frac {x}{2 b}+\frac {a \,{\mathrm e}^{i x}}{2 b^{2}}+\frac {a \,{\mathrm e}^{-i x}}{2 b^{2}}+\frac {i a^{3} \ln \left ({\mathrm e}^{i x}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{\sqrt {a^{2}-b^{2}}\, b}\right )}{\sqrt {a^{2}-b^{2}}\, b^{3}}-\frac {i a^{3} \ln \left ({\mathrm e}^{i x}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{\sqrt {a^{2}-b^{2}}\, b}\right )}{\sqrt {a^{2}-b^{2}}\, b^{3}}-\frac {\sin \left (2 x \right )}{4 b}\) \(179\)

input
int(sin(x)^3/(a+b*sin(x)),x,method=_RETURNVERBOSE)
 
output
-2*a^3/b^3/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*x)+2*b)/(a^2-b^2)^(1/2) 
)+2/b^3*((1/2*b^2*tan(1/2*x)^3+a*b*tan(1/2*x)^2-1/2*b^2*tan(1/2*x)+a*b)/(1 
+tan(1/2*x)^2)^2+1/2*(2*a^2+b^2)*arctan(tan(1/2*x)))
 
3.2.77.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 291, normalized size of antiderivative = 3.55 \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\left [-\frac {\sqrt {-a^{2} + b^{2}} a^{3} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (x\right )^{2} - 2 \, a b \sin \left (x\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (x\right ) \sin \left (x\right ) + b \cos \left (x\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (x\right )^{2} - 2 \, a b \sin \left (x\right ) - a^{2} - b^{2}}\right ) + {\left (a^{2} b^{2} - b^{4}\right )} \cos \left (x\right ) \sin \left (x\right ) - {\left (2 \, a^{4} - a^{2} b^{2} - b^{4}\right )} x - 2 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (x\right )}{2 \, {\left (a^{2} b^{3} - b^{5}\right )}}, \frac {2 \, \sqrt {a^{2} - b^{2}} a^{3} \arctan \left (-\frac {a \sin \left (x\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (x\right )}\right ) - {\left (a^{2} b^{2} - b^{4}\right )} \cos \left (x\right ) \sin \left (x\right ) + {\left (2 \, a^{4} - a^{2} b^{2} - b^{4}\right )} x + 2 \, {\left (a^{3} b - a b^{3}\right )} \cos \left (x\right )}{2 \, {\left (a^{2} b^{3} - b^{5}\right )}}\right ] \]

input
integrate(sin(x)^3/(a+b*sin(x)),x, algorithm="fricas")
 
output
[-1/2*(sqrt(-a^2 + b^2)*a^3*log(-((2*a^2 - b^2)*cos(x)^2 - 2*a*b*sin(x) - 
a^2 - b^2 - 2*(a*cos(x)*sin(x) + b*cos(x))*sqrt(-a^2 + b^2))/(b^2*cos(x)^2 
 - 2*a*b*sin(x) - a^2 - b^2)) + (a^2*b^2 - b^4)*cos(x)*sin(x) - (2*a^4 - a 
^2*b^2 - b^4)*x - 2*(a^3*b - a*b^3)*cos(x))/(a^2*b^3 - b^5), 1/2*(2*sqrt(a 
^2 - b^2)*a^3*arctan(-(a*sin(x) + b)/(sqrt(a^2 - b^2)*cos(x))) - (a^2*b^2 
- b^4)*cos(x)*sin(x) + (2*a^4 - a^2*b^2 - b^4)*x + 2*(a^3*b - a*b^3)*cos(x 
))/(a^2*b^3 - b^5)]
 
3.2.77.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\text {Timed out} \]

input
integrate(sin(x)**3/(a+b*sin(x)),x)
 
output
Timed out
 
3.2.77.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sin(x)^3/(a+b*sin(x)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.2.77.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.37 \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=-\frac {2 \, {\left (\pi \left \lfloor \frac {x}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, x\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )} a^{3}}{\sqrt {a^{2} - b^{2}} b^{3}} + \frac {{\left (2 \, a^{2} + b^{2}\right )} x}{2 \, b^{3}} + \frac {b \tan \left (\frac {1}{2} \, x\right )^{3} + 2 \, a \tan \left (\frac {1}{2} \, x\right )^{2} - b \tan \left (\frac {1}{2} \, x\right ) + 2 \, a}{{\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 1\right )}^{2} b^{2}} \]

input
integrate(sin(x)^3/(a+b*sin(x)),x, algorithm="giac")
 
output
-2*(pi*floor(1/2*x/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*x) + b)/sqrt(a^2 - 
 b^2)))*a^3/(sqrt(a^2 - b^2)*b^3) + 1/2*(2*a^2 + b^2)*x/b^3 + (b*tan(1/2*x 
)^3 + 2*a*tan(1/2*x)^2 - b*tan(1/2*x) + 2*a)/((tan(1/2*x)^2 + 1)^2*b^2)
 
3.2.77.9 Mupad [B] (verification not implemented)

Time = 7.25 (sec) , antiderivative size = 1004, normalized size of antiderivative = 12.24 \[ \int \frac {\sin ^3(x)}{a+b \sin (x)} \, dx=\frac {\frac {2\,a}{b^2}-\frac {\mathrm {tan}\left (\frac {x}{2}\right )}{b}+\frac {{\mathrm {tan}\left (\frac {x}{2}\right )}^3}{b}+\frac {2\,a\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2}{b^2}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^4+2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2+1}-\frac {\mathrm {atan}\left (\frac {40\,a^3\,\mathrm {tan}\left (\frac {x}{2}\right )}{8\,a\,b^2+40\,a^3+\frac {48\,a^5}{b^2}}+\frac {48\,a^5\,\mathrm {tan}\left (\frac {x}{2}\right )}{48\,a^5+40\,a^3\,b^2+8\,a\,b^4}+\frac {8\,a\,b\,\mathrm {tan}\left (\frac {x}{2}\right )}{8\,a\,b+\frac {40\,a^3}{b}+\frac {48\,a^5}{b^3}}\right )\,\left (a^2\,2{}\mathrm {i}+b^2\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{b^3}+\frac {a^3\,\mathrm {atan}\left (\frac {\frac {a^3\,\left (\frac {8\,\left (4\,a^6\,b^2+4\,a^4\,b^4+a^2\,b^6\right )}{b^5}+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (-8\,a^7\,b^2+4\,a^5\,b^4+7\,a^3\,b^6+2\,a\,b^8\right )}{b^6}+\frac {a^3\,\left (64\,a^4\,\mathrm {tan}\left (\frac {x}{2}\right )+\frac {8\,\left (2\,a^3\,b^6+2\,a\,b^8\right )}{b^5}+\frac {a^3\,\left (32\,a^2\,b^3+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (12\,a\,b^{10}-8\,a^3\,b^8\right )}{b^6}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}\right )\,1{}\mathrm {i}}{b^3\,\sqrt {b^2-a^2}}+\frac {a^3\,\left (\frac {8\,\left (4\,a^6\,b^2+4\,a^4\,b^4+a^2\,b^6\right )}{b^5}+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (-8\,a^7\,b^2+4\,a^5\,b^4+7\,a^3\,b^6+2\,a\,b^8\right )}{b^6}-\frac {a^3\,\left (64\,a^4\,\mathrm {tan}\left (\frac {x}{2}\right )+\frac {8\,\left (2\,a^3\,b^6+2\,a\,b^8\right )}{b^5}-\frac {a^3\,\left (32\,a^2\,b^3+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (12\,a\,b^{10}-8\,a^3\,b^8\right )}{b^6}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}\right )\,1{}\mathrm {i}}{b^3\,\sqrt {b^2-a^2}}}{\frac {16\,\left (2\,a^7+a^5\,b^2\right )}{b^5}+\frac {16\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (8\,a^8+8\,a^6\,b^2+2\,a^4\,b^4\right )}{b^6}+\frac {a^3\,\left (\frac {8\,\left (4\,a^6\,b^2+4\,a^4\,b^4+a^2\,b^6\right )}{b^5}+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (-8\,a^7\,b^2+4\,a^5\,b^4+7\,a^3\,b^6+2\,a\,b^8\right )}{b^6}+\frac {a^3\,\left (64\,a^4\,\mathrm {tan}\left (\frac {x}{2}\right )+\frac {8\,\left (2\,a^3\,b^6+2\,a\,b^8\right )}{b^5}+\frac {a^3\,\left (32\,a^2\,b^3+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (12\,a\,b^{10}-8\,a^3\,b^8\right )}{b^6}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}-\frac {a^3\,\left (\frac {8\,\left (4\,a^6\,b^2+4\,a^4\,b^4+a^2\,b^6\right )}{b^5}+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (-8\,a^7\,b^2+4\,a^5\,b^4+7\,a^3\,b^6+2\,a\,b^8\right )}{b^6}-\frac {a^3\,\left (64\,a^4\,\mathrm {tan}\left (\frac {x}{2}\right )+\frac {8\,\left (2\,a^3\,b^6+2\,a\,b^8\right )}{b^5}-\frac {a^3\,\left (32\,a^2\,b^3+\frac {8\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (12\,a\,b^{10}-8\,a^3\,b^8\right )}{b^6}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}\right )}{b^3\,\sqrt {b^2-a^2}}}\right )\,2{}\mathrm {i}}{b^3\,\sqrt {b^2-a^2}} \]

input
int(sin(x)^3/(a + b*sin(x)),x)
 
output
((2*a)/b^2 - tan(x/2)/b + tan(x/2)^3/b + (2*a*tan(x/2)^2)/b^2)/(2*tan(x/2) 
^2 + tan(x/2)^4 + 1) - (atan((40*a^3*tan(x/2))/(8*a*b^2 + 40*a^3 + (48*a^5 
)/b^2) + (48*a^5*tan(x/2))/(8*a*b^4 + 48*a^5 + 40*a^3*b^2) + (8*a*b*tan(x/ 
2))/(8*a*b + (40*a^3)/b + (48*a^5)/b^3))*(a^2*2i + b^2*1i)*1i)/b^3 + (a^3* 
atan(((a^3*((8*(a^2*b^6 + 4*a^4*b^4 + 4*a^6*b^2))/b^5 + (8*tan(x/2)*(2*a*b 
^8 + 7*a^3*b^6 + 4*a^5*b^4 - 8*a^7*b^2))/b^6 + (a^3*(64*a^4*tan(x/2) + (8* 
(2*a*b^8 + 2*a^3*b^6))/b^5 + (a^3*(32*a^2*b^3 + (8*tan(x/2)*(12*a*b^10 - 8 
*a^3*b^8))/b^6))/(b^3*(b^2 - a^2)^(1/2))))/(b^3*(b^2 - a^2)^(1/2)))*1i)/(b 
^3*(b^2 - a^2)^(1/2)) + (a^3*((8*(a^2*b^6 + 4*a^4*b^4 + 4*a^6*b^2))/b^5 + 
(8*tan(x/2)*(2*a*b^8 + 7*a^3*b^6 + 4*a^5*b^4 - 8*a^7*b^2))/b^6 - (a^3*(64* 
a^4*tan(x/2) + (8*(2*a*b^8 + 2*a^3*b^6))/b^5 - (a^3*(32*a^2*b^3 + (8*tan(x 
/2)*(12*a*b^10 - 8*a^3*b^8))/b^6))/(b^3*(b^2 - a^2)^(1/2))))/(b^3*(b^2 - a 
^2)^(1/2)))*1i)/(b^3*(b^2 - a^2)^(1/2)))/((16*(2*a^7 + a^5*b^2))/b^5 + (16 
*tan(x/2)*(8*a^8 + 2*a^4*b^4 + 8*a^6*b^2))/b^6 + (a^3*((8*(a^2*b^6 + 4*a^4 
*b^4 + 4*a^6*b^2))/b^5 + (8*tan(x/2)*(2*a*b^8 + 7*a^3*b^6 + 4*a^5*b^4 - 8* 
a^7*b^2))/b^6 + (a^3*(64*a^4*tan(x/2) + (8*(2*a*b^8 + 2*a^3*b^6))/b^5 + (a 
^3*(32*a^2*b^3 + (8*tan(x/2)*(12*a*b^10 - 8*a^3*b^8))/b^6))/(b^3*(b^2 - a^ 
2)^(1/2))))/(b^3*(b^2 - a^2)^(1/2))))/(b^3*(b^2 - a^2)^(1/2)) - (a^3*((8*( 
a^2*b^6 + 4*a^4*b^4 + 4*a^6*b^2))/b^5 + (8*tan(x/2)*(2*a*b^8 + 7*a^3*b^6 + 
 4*a^5*b^4 - 8*a^7*b^2))/b^6 - (a^3*(64*a^4*tan(x/2) + (8*(2*a*b^8 + 2*...